

NMTCB RADIATION SAFETY CERTIFICATION EXAMINATION CONTENT OUTLINE

I. <u>Content Pertaining to a RAM License</u>: (Expertise Area)

- A. Radiation physics and instrumentation
 - 1. Basic radiation physics
 - o atomic structure
 - o definitions radiation, radioactivity, half life
 - o modes of radioactive decay
 - units and quantities of radioactivity
 - o decay calculations
 - interactions of radiation with matter

2. Radiation detection and measurement

- detector types and uses (survey meters, dose calibrator, well counters, probes, gamma camera, PET Scanner)
- Detector / Instrument Selection
 - Detection efficiency
 - Energy Response
- statistics of counting
- o detector use, calibration, quality control requirements and regulations

3. Production of Radionuclides

- o reactors (basic principles and radionuclides)
- o accelerators (basic principles and radionuclides)
- o generators (column breakthrough limits, shielding, proper disposal)
 - ⁹⁹Mo/^{99m}Tc generator (LEU & HEU)
 - 82Sr/82Rb generator
 - ⁶⁸Ge/⁶⁸Ga generator
 - Others

4. Production of x-rays

- 1. Units of radiation exposure and dose US and SI (definitions and conversions)
- 2. Personal monitoring devices
- 3. Bioassays

B. Radiation dosimetry

- 4. Area monitoring room surveys
- 5. Effluent Monitoring
 - Annual Limits on Intake (ALIs) and Derived Air Concentrations (DACs) of Radionuclides for Occupational Exposure; Effluent Concentrations; Concentrations for Release to Sewerage
- 6. Sealed source monitoring
- 7. Basic concept of MIRD
- C. Radiation protection and ALARA
 - 1. Time, distance and shielding
 - 2. Regulations personnel and the general public
 - 3. Dose and exposure Limits
 - Radiation workers
 - Pregnant radiation workers
 - The public
 - 4. Personnel monitoring and records
 - Periodic review and annual reports
 - Employer responsibilities
 - Action limits and notifications level
 - Lead apron inspection and inventory
 - Dosimeter badge types (assigned badge position, electronic dosimeters, EDE1, EDE2, Webster, etc)
 - SDE, DDE, LDE, TEDE, Extremities
 - 5. Restricted and unrestricted areas (definitions and sign posting)
 - 6. Work place rules best practices
 - 7. ALARA philosophy
 - 8. Patient radiation safety & instructions
 - Factors affecting patient dose
 - Pregnancy and breast feeding
 - Patient release rule and underlying theory
- D. Mathematics pertaining to the use and measurement of radioactivity
 - 1. Decay equation & tables
 - 2. Counter efficiency / cpm to dpm
 - 3. Exposure calculations based on time, distance and shielding
 - o Time
 - Distance inverse square law
 - HVL definition, concept and calculation
 - 4. Effective Half Life
 - 5. Dose calibrator tests
 - Accuracy Test (percentage error calculations)

- Geometry
- Constancy
- Linearity
- Measurement of betas

Energy resolution calculation and window setting

- E. Radiation biology
- F. Security and control of radioactive materials
 - 1. Room security and access
 - 2. Signs & Sign Posting
 - 3. Proper storage and shielding
 - 4. Inventory and record keeping
 - 5. Security of a "spill area"
- G. Shipping & receiving of radioactive materials (air and ground)
 - 1. Related radiation surveys and records
 - 2. Regulations
 - 3. Package labeling
 - 4. Internal Transport of Radiation within the facility
- H. Disposal of byproduct material (and all required records)
 - 1. General trash
 - 2. Sewer
 - 3. Biohazard trash
 - 4. Decay in storage
 - 5. Return to the manufacturer
 - 6. Shipment for offsite disposal
- I. Administrative controls to avoid a medical event
- J. Emergency procedures
 - 1. Major and minor spill definitions and procedures
 - 2. Lost or stolen radioactive source
 - 3. Medical event definitions and procedures
 - 4. Radio-iodine therapy patient (or other therapy patient) requiring emergency care
 - 5. Death of therapy patient (soon after therapy)
 - 6. Community radiation emergency response.
- K. Regulations & resources
 - 1. License requirements, applications and amendments
 - o Facility design shielding requirements
 - o Broad scope / limited scope
 - 2. Agreement and non-agreement states
 - 3. Authorized user, training / experience requirements
 - 4. NRC Regulations:

- -NRC Title 10CFR19 Notices, Instructions and Reports to Workers)
- -NRC Title 10CFR20 (Standards for Protection Against Radiation)
- -NRC Title 10CFR35 (Medical Use of Byproduct Material)
- -NRC Title 10CFR71 (Transportation of Radioactive Materials)
- 5. Department of Transportation Regulations
 - -Title 49CFR170 (Hazardous Materials)
 - -Training requirements for medical licenses
 - -White I, Yellow II, Yellow III, UN2910, UN2908, TI
 - -Exempt quantities and limited quantities
- 6. Other agencies
 - -Environmental Protection Agency (EPA)
 - -FDA CDRH
- L. Radionuclide therapy best practices
 - 1. Radio-iodine therapy
 - Handling of doses
 - Patients receiving less than 33 mCi
 - Inpatients instructions for patients and nursing staff
 - Outpatients instructions for patients and family members
 - o Patients receiving more than 33 mCi
 - Regulatory requirements for hospitalization and release from the hospital
 - Room preparation and cleanup for hospitalized patients
 - Inpatients instructions for patients and nursing staff
 - Outpatients instructions for patients and family members
 - Storage and disposal of radio-iodine waste
 - 2. Emergency care of radio-iodine therapy patients
 - 3. Other radionuclide therapy (with P-32, Sr-89, Sm153, Ra-223, Lu-177)
 - 4. Brachytherapy
- M. Reference Documents: NUREG 1556 Volume 9 and 10 CFR Part 37

II. Content Pertaining to CT: (Expertise Area)

- A. CT Basics and Physics
 - 1. Production of x-rays
 - 2. X-ray detection
 - 3. Shielding of poly-energetic beams
 - 4. Scan Mode
 - Helical
 - Axial
 - 5. MDCT/Single slice/CBCT

- 6. AEC Tube current modulation
- 7. CT scatter iso-dose map application
- 8. Reconstruction methods- filter back projection, iterative

B. CT Dose Metrics

- 1. CTDI
- 2. DLP
- 3. Effective Dose
- 4. SSDE Size Specific Dose Estimate

C. CTDI Diagnostic Reference Levels

- 1. ACR values
 - o Adult
 - Pediatric
- 2. NCRP Report 172
- 3. CRCPD NEXT Data
- 4. CTDI Phantom size

D. Dose optimization

- o Protocol review
- With or without contrast use

E. Radiation Dose Management

- 1. Equipment Factors
 - o kVp
 - o mA
 - Fixed mAs
 - Tube current modulated mAs
 - Rotation time
 - Slice thickness
 - o Pitch
 - o Beam collimation
 - Resolution settings
 - Scan lengths
 - o Bolus tracking
 - Delayed scans
 - Repeat scans

2. Patient Factors

- Body Habitus
- Centering
- o Motion
- General patient positioning
- Increased attenuation

3. Other Factors

o Patient Shielding

- Holding patients
- Facility Shielding
- PPE for staff
- o CT Fluoro
- F. Deterministic vs. Stochastic Effects
- G. High Radiation Dose CT Settings
 - o CT Brain Perfusion, CT Fluoro, Bolus tracking

III. Content Pertaining to X-ray & Fluoroscopy (Competence but not expertise)

- A. X-ray and Fluoroscopy Physics
 - 1. Production of X-rays
 - 2. Detection of X-rays
 - 3. Fluoroscopy Units
 - Fixed
 - C-Arm, Cone beam CT with fluoro, Mini
 - Bi-Plane
- B. Fluoroscopy Dose Metric
 - 1. Fluoroscopy time
 - 2. Air kerma at the reference point (Ka,r)
 - 3. Dose Area Product (PKA)
 - 4. Peak skin dose (Dskin,max)
- C. Patient risk factors for hypersensitivity to radiation exposure
- D. High dose fluoroscopically guided intervention
 - Interventional Radiology
 - o Cardiac Catheterization Lab
 - Operating Room
- E. Radiation Dose Management
 - 1. ALARA
 - o Time
 - Distance
 - Shielding
 - Types
 - Patient
 - Staff
 - Equipment
 - Thickness
 - Storage
 - Inspections
 - o ALARA action levels

- o Room Shielding
- Reporting requirements

2. Equipment Factors

- o kVp
- o mA
- o Time
- o Field size
- Quality control frequency
- Equipment Geometry
 - X-ray tube position
 - Image receptor
 - Table height
- Grids
- Magnification
- Collimation
- Filtration
 - inherent vs. added
- last Image Hold
- Pulse fluoroscopy
- Cine Mode
 - fluoroscopy frames rates
- o Low verses normal detail mode
- Beam angle

3. Patient Factors

- Body habitus
- Scatter
- Entrance versus exit exposure ratios
- Dose notifications levels
 - Fluoroscopy time
 - Air kerma at the reference point (Ka,r)
 - DAP (P_{KA})

4. Staff Factors

- Position, training, apparel, PPE

F. Deterministic Exposure Levels

- o Substantial radiation dose level (SRDL) and time to onset
 - Ervthema
 - Early transient
 - Main erythema
 - Late erythema
 - Epilation
 - Dermal Atrophy
 - Dermal Necrosis
 - Secondary Ulceration
- Patient follow up after a Substantial radiation dose level (SRDL)

IV. Content Pertaining to MRI Safety: (Competence, but not expertise)

- A. Magnetic field units of measure
 - Gauss
 - Tesla
- B. Magnet types in MRI
 - Superconducting, Permanent, Resistive
 - Magnetic Susceptibility (Diamagnetic, Paramagnetic, Superparamagnetic, Ferromagnetic)
- C. Magnetic Fields
 - Static magnetic fields
 - Static magnetic field issues: Site Access Restriction Zoning
 - o Gradient magnetic fields
 - Slew Rate
 - Spatial Gradient
 - Active vs. Passive Shielding
 - o Fringe Field (Importance of 5 Gauss line)
- D. MRI Safety
 - Ferromagnetic objects/detectors
 - o Codes in a MRI environment
 - Emergency responders (fire, police)
 - o Define Zones I, II, III, & IV.
 - Personnel training levels
 - Screening (Patient, Staff, Equipment)
 - o Appropriate MRI labeling (MR safe vs. MR conditional vs. MR unsafe)
 - MRI Quenching
 - Hazards associated with liquid Helium
 - -Thermal Hazards
 - -Fire Hazards
 - -Asphyxiation Hazards
 - Hazards associated with strong radio frequency fields
 - -(SAR)
 - -Burns caused by Loops
 - -Operating modes for MR systems
 - Sequences looping
 - Padding
 - o Coils
 - Acoustic noise
 - Explosive decompression
- E. Contrast Agent Safety

V. Optimizing Radiation Exposure / Other Topics

- A. Appropriateness Criteria
- B. Image Wisely
- C. Image Gently
- D. Protocols
- E. Considerations for pregnant and/or pediatric patient
 - Alternative exams
 - o Benefit vs. risk
- F. Regulations around Brachytherapy
 HDR, LDR, permanent
- G. Microspheres
- H. Mammography
- I. DEXA / Bone density
- J. Research with Radioactive Materials
- K. Radioactive Seed Localization
- L. Linac linear accelerator
- M. Blood irradiator

Related Guidelines & References:

- AAHP/HPS Qualifications for Health Care Facility Radiation Safety Officer (Jan 2003)
- National Council on Radiation Protection and Measurements (NCRP) <u>Publications</u>
- ACR Disaster Preparedness for Radiology Professionals
- NRC: 10 CFR Part 35, "Medical Use Licenses"
- AAPM Report No. 124 A Guide for Establishing a Credentialing and Privileging Program for Users of Fluoroscopic Equipment in Healthcare Organizations (2012)
- AAPM Report No. 160 <u>Radiation Safety Officer Qualifications for Medical Facilities:</u> Report of Task Group 160;
- AAPM Report No. 204- <u>Size-Specific Dose Estimates (SSDE) in Pediatric and Adult</u> Body CT Examinations
- ACR-SPR Practice Parameter For Imaging Pregnant or Potentially Pregnant Adolescent and Women with Ionizing Radiation
- ACR <u>Guidance Document on MR Safety Practices</u>: 2013. Journal of Magnetic Resonance Imaging 37:501–530 (2013) Authors: E. Kanal, AJ Barkovich, C Bell et al.
- Image Gently® The Alliance for Radiation Safety in Pediatric Imaging
- Image Wisely® Radiation Safety in Adult Medical Imaging