I. **DIAGNOSTIC PROCEDURES (~35%) [70 items]**

A. **Administration of Radiopharmaceuticals**
 1. Dosage determination
 a. Calculation of pediatric dose
 b. Calculation of radiopharmaceutical/pharmaceutical dose
 c. Volume determination
 d. Units – calculations and conversion
 e. Dose determination according to scan mode and equipment type
 2. Dose preparation and administration
 a. Verify correct radiopharmaceutical for exam
 b. Preparation for administration
 c. Assay in dose calibrator
 d. Radiopharmaceutical labeling
 e. Administration technique
 f. Residual dose measurement
 3. Routes of administration
 4. Intravenous injection techniques
 5. Factors affecting biodistribution
 a. Cardiology
 i. Serum glucose level
 ii. Serum insulin level
 b. Neurology
 i. Stimulation
 ii. Surgical variants
 iii. Radiation treatment
 iv. Serum insulin/glucose levels
 v. Psychotropic drugs
 vi. Ictal vs. inter-ictal state
 c. Oncology
 i. Serum insulin/glucose levels
 ii. Exercise
 iii. Chemotherapy
 iv. Radiation therapy
 v. Surgery/biopsy
 vi. Hemopoietins
 vii. Muscle tension
 viii. Hydration
 ix. Inflammatory disease
 x. Infectious processes

B. **Administration of interventional pharmaceuticals, pharmaceuticals and contrast media**
 1. Basic concepts
 a. Indications
 b. Contraindications
 c. Adverse reactions
 d. Medication interactions
 e. Dosing and route of administration
 f. Pediatric considerations
2. Emergency care
 a. CPR
 b. Emergency medications
 c. Diabetic complications
 d. Contrast reactions
 e. hypoglycemia
3. Pharmaceuticals
 a. Cardiology
 i. Dobutamine
 ii. Adenosine
 iii. Dipyridamole
 iv. Glucose
 v. Insulin
 vi. Hyperinsulinemic-euglycemic clamp
 b. Neurology
 i. Sedatives/Anxiolytics
 ii. Antiseizure
 c. Oncology
 i. Diuretics
 ii. IV/oral hydration
 iii. Sedatives/Anxiolytics
 iv. Insulin
4. Contrast media
 a. Oral
 b. Non-ionic
 c. Ionic

C. Gated Procedures
 1. Equipment
 2. Lead placement
 3. Sources of error
 a. Patient
 b. Equipment
 c. User

D. Imaging Techniques:
 1. Cardiology:
 a. History and assessment
 b. Indications and contraindications
 c. Patient preparation/instructions
 i. pre-arrival
 ii. pre-injection
 iii. post-injection
 iv. post-procedure–discharge instructions
 d. ECG’s
 i. Patient preparation, electrode placement
 ii. Rate calculation
 iii. Normal and abnormal rhythms
 e. Exercise
 f. Uptake period
NMTCB Specialty Exam
Positron Emission Tomography Examination
Content Outline

3. Oncology:
 a. History and assessment
 b. Indications and contraindications
 c. Patient preparation/instructions
 i. pre-arrival
 ii. pre-injection
 iii. post-injection
 iv. post-procedure – discharge instructions
 d. Uptake time
 e. Patient positioning
 i. Arms up/down
 ii. Head first/feet first
 f. Imaging techniques
 g. Anatomy/physiology/clinical indications
 i. Colorectal cancer
 ii. Head/Neck cancer
 iii. Esophageal cancer
 iv. Non-Small Cell Lung cancer
 v. Single Pulmonary Nodule (SPN) evaluation
 vi. Breast cancer
 vii. Melanoma
 viii. Lymphoma
 ix. Thyroid cancer
 x. Other indications
NMTCB Specialty Exam
Positron Emission Tomography Examination
Content Outline

4. Acquisition modes
 a. 2D
 b. 3D
 c. Emission
 d. Transmission
 i. Measured
 ii. CT
 e. Single bed position
 i. Post-injection start time
 ii. Scan duration
 f. Dynamic imaging
 i. Framing rates
 ii. Injection sites/techniques
 g. Whole body imaging
 i. Post-injection start time
 ii. Number of bed positions
 iii. Scan duration/bed
 iv. Slice overlap

II. Instrumentation/Quality Control (~30%) [60 items]

A. Survey Meter
 1. Operating principles
 2. Quality control
 3. Source selection
 4. Interpretation of QC results

B. Dose calibrator
 1. Operating principles
 2. Quality control (accuracy, linearity, geometry, constancy)
 3. Frequency of quality checks
 4. Source selection
 5. Interpretation of results

C. Well Counter
 1. Operating principles
 2. Quality control (constancy, energy FWHM, chi-square)
 3. Frequency of quality checks
 4. Source selection
 5. Interpretation of results

D. Scintillation Detector Systems
 1. Principles of scintillation detection
 2. Detector materials
 a. BGO
 b. LSO
 c. GSO
 d. NaI
3. System types
 a. Dedicated PET
 i. Full ring
 ii. Partial ring
 iii. Detector panels
 b. Integrated PET/CT

4. Quality control
 a. Normalization
 b. Blank scan
 c. Gains (Singles)
 d. Calibration factors for quantification
 e. Scanner failure/recognition of instrumentation artifacts
 i. Detector failure
 ii. High voltage drift
 iii. Energy drift
 iv. Gain drift
 v. Power supply drift/failure
 vi. Temperature drift (cooling system failure)
 vii. Coincidence timing malfunction
 viii. Transmission source malfunction
 ix. Septa mis-positioning/alignment
 x. Imaging table failure

5. System performance
 a. Scatter fraction
 b. Randoms fraction
 c. Noise equivalent count rate (NEC)
 d. NEMA standards and testing

E. Theory of Operation

1. Principles of Coincidence Detection
 a. Trues
 b. Randoms
 c. Scatter
 d. Lines of response (LORs)
 e. Delayed event
 f. Coincidence timing window

2. Image Formation and Reconstruction
 a. Sinograms
 i. 2D
 ii. 3D
 iii. Fourier rebinning
 iv. Filtered back projection (FBP)
 v. Iterative reconstruction
 a Ordered subset expectation maximization (OSEM)
 b Maximum likelihood expectation maximization (MLEM)
 b. Image filters/cutoff frequencies

3. Data processing/corrections
 a. Normalization
 b. Decay correction
NMTCB Specialty Exam
Positron Emission Tomography Examination
Content Outline

c. Attenuation correction
 i. Calculated
 ii. Measured
 iii. Segmented
 iv. No attenuation correction
d. Random correction
e. Scatter correction

F. Data Analysis
 1. Quantitative analysis
 a. Region of interest
 b. Time activity curves
 c. Standardized Uptake Value (SUV)
 i. Methods of calculation
 ii. Sources of error
 d. Metabolic flow rate measurement and analysis
 e. R to L count profiles and histogram
 f. Cardiac polar mapping
 g. Other
 2. Image reconstruction variants

G. Basic Principles of Image Fusion/Image Registration
 1. Manual
 2. Mechanical
 3. Automated
 a. Rigid
 b. Deformable

H. Image Artifacts
 1. Pre-procedure
 a. Medications
 b. Prosthetics
 c. Therapeutic effects
 d. Exercise
 2. Injection/uptake
 a. Muscle tension
 b. Injection sites/tubing
 c. Radioactive contamination
 d. Environment (temperature, noise)
 3. Scanning Procedure
 a. Patient motion
 b. Transmission/emission (misalignment)
 c. Bed position overlap
 d. Urinary catheter lines
 e. IV lines
 f. High Z material
 g. Filter/cutoff selection
 h. Partial volume effect
 i. Attenuation correction
NMTCB Specialty Exam
Positron Emission Tomography Examination
Content Outline

j. CT
 i. Contrast
 ii. Attenuation correction

III. RADIATION PROTECTION (~10%) [20 items]

A. Personal protection/monitoring
 1. Basic concepts (ALARA)
 2. Personnel protection
 a. Time
 b. Distance
 c. Shielding
 i. Patient dose
 ii. Dose calibrator
 iii. Scanning room
 iv. Waiting room
 v. Control room
 vi. Patient holding room
 vii. Waste
 3. Personnel monitoring devices (body/extremity)
 4. Regulatory requirements including appropriate signage

B. Area/facilities monitoring
 1. Basic concepts
 2. Survey equipment
 3. Radiation surveys
 4. Regulatory requirements

C. Packaging and storage of radioactive materials
 1. Inspection of incoming/outgoing materials
 2. Storage of radiopharmaceuticals

D. Records
 1. Shipping of radioactive materials
 2. Receipt of radioactive materials
 3. Administration of radioactive materials
 4. Storage of radioactive materials
 5. Disposal of radioactive materials
 6. Radiation surveys

E. Radioactive decontamination
 1. Area
 2. Personnel

F. Disposal of Radioactive Waste
 1. Release to environment
 2. Decay to storage
 3. Incineration
 4. Transfer to authorized recipient
G. Medical Events
 1. Definitions
 2. Reporting and notification

IV. RADIOPHARMACEUTICALS (~25%) [50 items]

A. Radiopharmaceutical Characteristics
 1. Method of localization
 2. Radiopharmaceutical kinetics
 3. Radiopharmaceutical dosimetry
 4. Radiopharmaceutical biodistribution and normal variants

B. Physical properties of radioactive materials
 1. Types of emissions
 2. Energies
 3. Decay rate and half-life

C. Positron radionuclide principles
 1. Positron decay
 2. Positron energy
 3. Annihilation reaction
 4. Bremsstrahlung radiation
 5. Decay factors
 6. Exposure rates
 7. Half value layer

D. Radionuclide production
 1. Cyclotron
 a. Principles of operation
 b. Targetry
 2. Generators
 a. Principles of operation
 b. Elution
 c. Quality control

E. Synthesis of radiopharmaceuticals
 1. Basic chemistry
 2. Synthesis modules

F. Quality control of radiopharmaceuticals/radiochemicals/chemicals
 1. Purity
 2. Identity
 3. Sterility
 4. Apyrogenicity
 5. pH
 6. Stability
NMTCB Specialty Exam
Positron Emission Tomography Examination
Content Outline

PROCEDURES LIST

Cardiology
CMS approved indications:
1. Rest/stress perfusion
2. Viability

Neurology
CMS approved indications
1. Alzheimer
2. Epileptic seizures
Other indications
3. Dementia
4. Brain tumor
5. Movement disorder

Oncology
CMS approved indications
1. Colon cancer
2. Cervical cancer
3. Head/Neck cancer
4. Non-small cell lung cancer
5. Solitary pulmonary nodule (SPN) evaluation
6. Breast cancer
7. Melanoma
8. Lymphoma
9. Thyroid cancer
Other indications:
1. Ovarian cancer
2. Pancreatic cancer
3. Sarcomas

Miscellaneous Imaging
1. F-18 FDG inflammation/infection imaging
2. F-18 sodium fluoride - skeletal imaging

DIAGNOSTIC RADIOPHARMACEUTICALS

1. C-11 acetate
2. C-11 Choline
3. C-11 Palmitate
4. F-18 fluorodeoxyglucose (FDG)
5. F-18 fluorodopa (F-Dopa)
6. F-18 sodium fluoride
7. F-18 fluorothymidine (FLT)
8. F-18 fluoromisonidazole (FMISO)
9. N-13 ammonia
10. O-15 O₂
11. O-15 water
12. Rb-82 chloride
13. F-18 sodium fluoride
14. F-18 fluorbetapir
15. F-18 flurpiridaz
16. F-18 choline
17. Ge-68
18. Ga-68 dotatoc
19. Ga-68 dotanoc
20. Ga-68 dotatate
21. I-124
22. Cu-64
23. C-11 choline
24. F-18 flutemetamol
25. F-18 florbetaben

MISCELLANEOUS PHARMACEUTICALS
1. Acetylsalicylic acid
2. Anticoagulants
3. Antiarrhythmics
4. Calcium channel blockers
5. ACE inhibitors
6. Cholesterol-lowering drugs
7. Digoxin
8. Nitrates
9. Beta blockers
10. Caffeine
11. Growth stimulation hormone factor
12. Hematopoetins
13. Diabetic medications
14. Steroids
15. Glucose

INTERVENTIONAL PHARMACEUTICALS
1. Adenosine
2. Dipyridamole
3. Diuretics
4. Aminophylline
5. Dobutamine
6. Theophylline
7. Furosemide
8. Insulin
9. Glucose
10. Sedatives/Anxiolytics

CONTRAST MEDIA
1. Oral
2. Non-ionic
3. Ionic

EQUIPMENT LIST
1. Dedicated PET scanner and integrated PET/CT scanner
2. Dose calibrator
3. Well counter
4. Survey meter
5. Glucose meter
6. ECG monitor
7. Gate box/trigger
8. Defibrillator, emergency cart access
9. O₂ saturation monitor
10. Intravenous infusion pump
11. EEG monitor
12. Radiopharmaceutical generator
13. Dose delivery system